
Dr Christopher Jones
CCE IOS
4 November 2020

Testing Framework and Performance Results



11/04/2020 C Jones I Testing Framework and Performance Results

Testing Framework Purpose

• Mimic the characteristics of a HEP data processing framework
• Similar multi-threaded behavior
• Similar I/O behavior
• Should reasonably behave like CMS, ATLAS and DUNE frameworks

• Easily try different I/O implementations
• Choose what to use via command line arguments

• Experiment agnostic
• With ability to read actual experiment ROOT files
• ROOT will dynamically load serialization/deserialization plugins as needed

• Make it easier to perform performance measurements
• I/O performance
• threaded scaling performance 

2



11/04/2020 C Jones I Testing Framework and Performance Results

Review of ROOT

• ROOT is a C++ toolkit used in HEP

• Relevant parts of ROOT for CCE-IOS
• A serialization mechanism for C++ objects
• A file format to store the serialized objects

• ROOT output and concurrency
• ROOT’s file API allows only 1 thread to interact with a file at a time
• Internally ROOT uses TBB tasks
• Can compress different Data Products concurrently (serialization is still sequential)

3



11/04/2020 C Jones I Testing Framework and Performance Results

HEP Framework Mimicry

• Only deals with processing of Events
• An Event is just a collection of Data Products

• Data Product
• Can be any C++ type
• Each Data Product can be accessed independent of all other Data Products

• Source
• Mimics reading of Events

• Outputer
• Mimics writing of Events

• Waiter
• Mimics processing of Events

4



11/04/2020 C Jones I Testing Framework and Performance Results

Processing Events

• Specify maximum number of threads to use
• Use Intel’s Threading Building Blocks to control threads
• Used by CMS, ATLAS, DUNE and ROOT

• Asynchronous calls encapsulate work to be done into a Task
• Task gets passed to TBB which runs the Task when a thread becomes available
• When a Task finishes, it often makes another asynchronous call

• Specify the number of concurrent Events to use
• Each Event has its own Lane
• Lanes run concurrently

5



11/04/2020 C Jones I Testing Framework and Performance Results

• Handles processing of one Event at a time

• Processing order
• Asynchronously requests new Event from framework
• Request goes to Source
• Makes an asynchronous request to get each Data Product
• Request goes to Source
• When get completes, start asynchronous wait request to the Waiter assigned to the 

Data Product
• When Waiter finishes, asynchronously signal to Outputer that a Data Product is ready
• Once Outputer is done with all data product, asynchronously signal Outputer the Event 

is finished

Lane

6

DP 1

DP 2

Get 1

Get 2

Wait 1

Wait 2

Ready 1

Ready 2

Finish
Out

Event

Source

Waiter Outputer



11/04/2020 C Jones I Testing Framework and Performance Results7

Output
Performance
Tests



11/04/2020 C Jones I Testing Framework and Performance Results

Goal

• Use realistic CMS data file
• CMS standard ‘big’ analysis format: AOD
• ~500 kB/event
• Created by standard Monte Carlo simulation procedure

• Measure thread scaling of writing data from that file
• Write ROOT format
• Using ROOT serialization concurrently without output
• Write a simple format

8



11/04/2020 C Jones I Testing Framework and Performance Results

Measurements

• Machine Used
• AMD Opteron(tm) Processor 6128
• 4 CPUs with 8 Cores per CPU => 32 Cores in node

• Testing procedure
• Number of Events processed in a job is directly proportionally to number threads used
• Exception is when jobs stop scaling with threads, then fix number events processed
• Unless otherwise noted, number of concurrent Events == number of threads
• Machine was always fully loaded
• #threads per job * # concurrently running jobs == 32

• Read first 10 events from the file and replay objects over and over
• No dependency on storage device read speeds on measurements

• No file actually written
• Output goes to /dev/null
• Avoids dependency on speed of storage device in measurement

9



11/04/2020 C Jones I Testing Framework and Performance Results

Write ROOT File No Compression

• No scaling
• This was expected as no IMT used

10

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

2

4

6

8

10

12

Number of Threads/Concurrent Events
0 8 16 24 32



11/04/2020 C Jones I Testing Framework and Performance Results

Write ROOT File With Compression

• Limited scaling
• Not much concurrency in compressing data products

11

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

2

4

6

8

10

12

Number of Threads/Concurrent Events
0 8 16 24 32



11/04/2020 C Jones I Testing Framework and Performance Results

ROOT Object Serialization Only

• Good scaling till 24 threads
• Scaling limit caused by a synchronization while serializing C++ objects

12

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

100

200

300

400

500

600

700

Number of Threads/Concurrent Events
0 8 16 24 32



11/04/2020 C Jones I Testing Framework and Performance Results

Simple Data Format

• Use ROOT C++ object serialization concurrently
• Allow each serialized Event to be compressed concurrently

13

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

100

200

300

400

500

600

700

Number of Threads/Concurrent Events
0 8 16 24 32



11/04/2020 C Jones I Testing Framework and Performance Results

Conclusion

• Have a flexible I/O testing framework
• Can test input and output formats and approximate HEP job timings

• Has lead to thread scaling performance of ROOT serialization
• On second round of improvements

• Code can be found here
• https://github.com/Dr15Jones/root_serialization

14

https://github.com/Dr15Jones/root_serialization

